kocham
kocham
09.12.11, 15:45 | Gimnazjum / Język polski (wypracowanie)
Zgłoś

Zbyszko z Bogdańca – charakterystyka

Jednym z głównych bohaterów powieści H. Sienkiewicza „Krzyżacy” jest Zbyszko z Bogdańca. Wywodził się z rodu, który pieczętował się herbem „Tępa Podkowa”.

Był on bardzo dobrze zbudowanym, młodym mężczyzną o dziecinnie wyglądającej twarzy. Miał on długie, jasne włosy, z krótko przystrzyżoną grzywką, które skrywał na co dzień pątlikiem. Zazwyczaj ubierał się w kaftan ze skóry łosia, zaś do podróży zakładał zbroję. Na specjalne okazje jednak miał coś w zanadrzu. Był to strój zdobyty na Fryzach: biała jaka haftowana u dołu w złote gryfy, kolorowe, pasiaste nogawice oraz piękna mediolańska zbroja.

Zbyszka cechowała pewność siebie i wielka odwaga, o czym świadczył jego atak na posła niemieckiego Liechtensteina. Był także bardzo opiekuńczy i zdolny do wszelkich poświęceń w stosunku do bliskich. Potwierdził to wyruszając samotnie na polowanie na niedźwiedzia, aby zdobyć trochę niedźwiedziego sadła dla ciężko chorego stryja. Często działał bez zastanowienia, na przykład, gdy ślubował Danusi niemieckie hełmy z pawimi czubami nie zastanawiając się, skąd je weźmie w czasie pokoju z zakonem krzyżackim. Był także nieco naiwny, o czym świadczyło przyjęcie do drużyny Sanderusa, który okazał się oszustem.
R E K L A M A czytaj dalej ↓

Zawsze był niezwykle wierny osobom, które kochał oraz rycerskim ideałom, w które gorąco wierzył. Obdarowywał Danuśkę wielką miłością. Potwierdza to wielokrotnie, bez zastanowienia narażając swoje życie, by wydostać ją z rąk Krzyżaków.

Według mnie, Zbyszko z Bogdańca jest człowiekiem godnym naśladowania, mimo iż czasem wykazuje młodzieńczą skłonność do braku opanowania i lekkomyślności.




Edytor zaawansowany Zamknij
Podgląd:
Nazwa Kod Rezultat
Odstęp \ a następnie spacja
Nowa linia \\
Potęga x^{2}
Ułamek \frac{x}{y}
Pierwiastek \sqrt{x}
Pierwiastek n-tego stopnia \sqrt[n]{x}
Iloczyn wektorowy \times
Iloczyn skalarny \cdot
Układ 2 równań \left \{ {{y=2} \atop {x=2}} \right
Układ n równań (każde w nowej linii) \begin{cases} ax+b=0\\cx+d=0\\ex+f=0 \end{cases}
Indeks dolny x_{123}
Indeks górny x^{123}
Znaki specjalne \backslash \ \% \ \# \ \$ \ \& \ \^ \ \~
Kwantyfikator "istnieje" \exists
Kwantyfikator "dla każdego" \forall
Suma zbiorów \cup
Iloczyn zbiorów \cap
Mniejsze lub równe \leq
Większe lub równe \geq
Nierówność \neq
Około \approx
Najczęściej używane symbole:
Pi \pi
Nieskończoność \infty
Alfa \alpha
Beta \beta
Gamma \gamma
Wyrażenia zaawansowane:
Całka nieoznaczona \int{x}\, dx
Całka oznaczona \int\limits^a_b {x} \, dx
Limes \lim_{n \to \infty} a_n
Suma szeregu \sum_{n=1}^{\infty}\frac{1}{n}
Macierz \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]